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Bilateral mock theta functions were obtained and studied in [22]. We 

express them in terms of Lerch's transcendental function𝑓(𝑥, 𝜉; 𝑞, 𝑝). We 

also express some bilateral mock theta functions as sum of other mock 

theta functions. We generalize these functions and show that these 

generalizations are 𝐹𝑞  functions.  We give an integral representation for 

these generalized functions. 

 

Keywords: 

Mock theta functions; bilateral 

mock theta functions*; Lerch 

transcendent; 𝐹-function. 

 Copyright © 2017International Journals of Multidisciplinary 
Research Academy. All rights reserved. 

Author correspondence: 

Department of Mathematics 
National Defence Academy Khadakwasla Pune-411023 

 

 

1. Introduction:The mock theta functions were first introduced by Ramanujan [3] in his last 
letter to G. H. Hardy in January 1920. He provided a list of seventeen mock theta functions 
and labelled them as of third, fifth and seventh order without mentioning the reason for 
his labelling.  Watson [18] added to this set three more third order mock theta functions. 
His general definition of a mock theta function is a function 𝑓(𝑞) defined by 𝑞-series 

convergent when |𝑞| < 1 which satisfies the following two conditions. 

(𝑎) For every root 𝜉 of unity, there exists a theta function†𝜃𝜉(𝑞) such that the difference 

between 𝑓(𝑞) and   𝜃𝜉(𝑞)is bounded as 𝑞 → 𝜉 radially. 

(𝑏) There is no single theta function which works for all 𝜉 i.e. for every theta function  𝜃𝜉(𝑞)  

there is some root of unity  𝜉  for which 𝑓(𝑞) minus the theta function 𝜃𝜉(𝑞)  is unbounded 

as 𝑞 → 𝜉 radially.   

 

                                                           
* In bilateral form summation is taken  from −∞ 𝑡𝑜 ∞.  
†When Ramanujan refers to theta functions, he means sums, products, and quotients of series of the form 

∑ 𝜖𝑛𝑞𝑎𝑛2+𝑏𝑛
𝑛∈𝑧   with 𝑎, 𝑏 ∈ 𝑄  and 𝜖 =  −1, 1.  
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Andrews and Hickerson [15] announced the existence of eleven more identities given in 
the ‘Lost’ note book of Ramanujan involving seven new functions which they labelled as 
mock theta functions of order six. 
Y. S. Choi [1] has discovered four functions which he called the mock theta function of order 
ten. B. Gordon and R. J. McIntosh [30] have announced the existence of eight mock theta 
functions of order eight and R. J. McIntosh [5] has announced the existence of three mock 
theta functions of order two. 
 
Hikami [13], [14] has introduced a mock theta function of order two, another of order four 
and two of order eight. Very recently Andrews [16] while studying 𝑞-orthogonal 
polynomials found four new mock theta functions and Bringmann et al [12] have also found 
two more new mock theta functions but they did not mention the order of their mock theta 
functions. 
 
Watson [19] has defined four bilateral series, which he has called the ‘Complete’ or Bilateral 
forms for four of the ten mock theta functions of order five. Further he has expressed them 
in terms of the transcendental function 𝑓(𝑥, 𝜉; 𝑞, 𝑝) studied by M. Lerch [7]. S. D. Prasad 
[2] in 1970 has defined the ‘Complete’ or ‘Bilateral’ forms of the five generalized third order 
mock theta functions. The ‘Complete’ sixth order mock theta functions were studied by A. 
Gupta [31]. Bhaskar Srivastava [26], [27], [28], [29] have studied bilateral mock theta 
functions of order five, eight, two and new mock theta functions by Andrews [6] and 
Bringmann et al [12]. 
 

Truesdell [25] calls the functions which satisfy the equation  
𝜕

𝜕𝑧
𝐹(𝑧, 𝛼) = 𝐹(𝑧, 𝛼 + 1)  as 𝐹- 

functions. He has tried to unify the study of these 𝐹-functions. The function which satisfy 
the 𝑞- analogue of the equation  𝐷𝑞,𝑧𝐹(𝑧, 𝛼) =  𝐹(𝑧, 𝛼 + 1) where 𝑧𝐷𝑞,𝑧𝐹(𝑧, 𝛼) =

 𝐹(𝑧, 𝛼) −  𝐹(𝑧𝑞, 𝛼) are called 𝐹𝑞- functions. 

 
D P Shukla and M Ahmad has obtained and studied the following bilateral mock theta 
functions in [22]. 
 

𝑓0,𝑐5
(𝑞) =   ∑(−1)𝑛

𝑞
(

5𝑛2

2
  −  

3𝑛

2
)

(−q; q)𝑛
,                                                        (1.1)      

∞

−∞ 

 

 

𝑓1,𝑐5
(𝑞) =   ∑(−1)𝑛

𝑞
(

5𝑛2

2
  −  

𝑛

2
)

(−q; q)𝑛
,                                                           (1.2)    

∞

−∞ 

 

𝐹0,𝑐5
(𝑞2) =   ∑(−1)𝑛

𝑞(5𝑛2−3𝑛)

(q; 𝑞2)𝑛
,                                                       (1.3) 

∞

−∞ 

 

 

𝐹1,𝑐5
(𝑞) =   ∑(−1)𝑛

𝑞(10𝑛2−2𝑛)

(𝑞6; 𝑞4)𝑛
,                                                           (1.4)   

∞

−∞ 
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Ψ0,𝑐5
(𝑞) =   ∑(−1)𝑛𝑞(2𝑛2+6𝑛)(−q; q)𝑛                                           (1.5) 

∞

−∞ 

 

Φ1,𝑐5
(𝑞2) =   ∑(−1)𝑛𝑞(4𝑛2+8𝑛)(−q; q2)𝑛                                         (1.6)   

∞

−∞ 

 

 

Φ0,𝑐5
(𝑞2) =   ∑(−1)𝑛

𝑞5𝑛2

(−q; q2)𝑛
                                                          (1.7) 

∞

−∞ 

 

Ψ1,𝑐5
(𝑞) =   ∑(−1)𝑛+1

𝑞𝑞
(

5𝑛2

2
 +  

5𝑛
2

)

2(−q; q)𝑛
                                                             (1.8) 

∞

−∞ 

 

The paper is divided as follows: In section 2 we list few important definitions. In section 3 
we develop certain properties of these functions by expressing some of them as sums of 
other mock theta functions. We also express these functions in terms of the Lerch 
transcendental function𝑓(𝑥, 𝜉; 𝑞, 𝑝). In section 4  we generalize these functions which are 
then proved to be 𝐹𝑞 functions. We further give an integral representation of these 

functions. 
 
2. Notation and Definitions: 
 
We use the following 𝑞-notation. Suppose 𝑞 and 𝑧 are complex numbers and 𝑛 is an 
integer. If 𝑛 ≥ 0 we define 

(𝑧)𝑛 = (𝑧; 𝑞)𝑛 =   ∏ (1 − 𝑞𝑖𝑧 )𝑛−1
𝑖=0  𝑖𝑓 𝑛 ≤ 0  and (𝑧)−𝑛 = (𝑧; 𝑞)−𝑛 =  

(−𝑧)−𝑛𝑞𝑛(𝑛+1)/2

(𝑞
𝑧

;𝑞)𝑛
 

and more generally   (𝑧1, 𝑧2, ⋯ , 𝑧𝑟; 𝑞)𝑛  = (𝑧1)𝑛(𝑧2)𝑛 ⋯ (𝑧𝑟)𝑛. 
 
For   |𝑞𝑘| < 1  let us define 

(𝑧; 𝑞𝑘)𝑛 = (1 − 𝑧)(1 − 𝑧𝑞𝑘) ⋯ (1 − 𝑧𝑞𝑘(𝑛−1)) 𝑛  ≥  1 (𝑧; 𝑞𝑘)0 = 1 

 and (𝑧; 𝑞𝑘)∞ = 𝑙𝑖𝑚𝑛→∞(𝑧; 𝑞𝑘)𝑛 =  ∏ (1 − 𝑞𝑘𝑖𝑧)𝑖≥0  and even more generally, 
(𝑧1, 𝑧2 ⋯  𝑧𝑟; 𝑞𝑘)∞ = (𝑧1; 𝑞𝑘)∞ ⋯ (𝑧𝑟; 𝑞𝑘)∞. 

 

A basic hypergeometric series Φ𝑟+1 𝑟on base 𝑞𝑘is defined as 

Φ𝑟𝑟+1 [
𝑎1,𝑎2, … . , 𝑎𝑝

  𝑏1𝑏2, … . , 𝑏𝑞
; 𝑞 𝑧] =    ∑

(𝑎1, 𝑎2, ⋯ , 𝑎𝑟; 𝑞𝑘)𝑛𝑧𝑛

(𝑞𝑘; 𝑞𝑘)𝑛(𝑏1, 𝑏2, ⋯ 𝑏𝑟; 𝑞𝑘)𝑛
,

∞

𝑛=0

   (|𝑧|  < 1) 

 

and a bilateral basic hypergeometric series Ψ𝑟 𝑟 is defined as 

Ψ𝑟𝑟+1 [
𝑎1,𝑎2, … . , 𝑎𝑝

  𝑏1𝑏2, … . , 𝑏𝑞
; 𝑞 𝑧]

=    ∑
(𝑎1, 𝑎2, ⋯ , 𝑎𝑟; 𝑞𝑘)𝑛𝑧𝑛

(𝑞𝑘; 𝑞𝑘)𝑛(𝑏1, 𝑏2, ⋯ 𝑏𝑟; 𝑞𝑘)𝑛
,

∞

𝑛=−∞

(|
𝑏1  ⋯ 𝑏𝑟

𝑎1 ⋯ 𝑎𝑟
| < |𝑧| < 1) 

 
The Lerch transcendental function 𝑓(𝑥, 𝜉; 𝑞, 𝑝)is defined by: 

𝑓(𝑥, 𝜉; 𝑞, 𝑝) = ∑
(𝑝𝑞)𝑛2

(𝑥𝜉)−2𝑛

(−𝑝𝜉−2; 𝑝2)𝑛

∞

−∞

 𝑎𝑛𝑑 𝑏𝑦  
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𝑓(𝑥, 𝜉; 𝑞, 𝑝) = ∑(−𝜉2𝑝; 𝑝2)𝑛

∞

−∞

𝑞𝑛2
𝑥2𝑛. 

3. Certain Identities and Their Lerch Repersentation: 

The following identities between the bilateral mock theta functions given in Equations 1.1, 
1.5, 1.6, 1.7 and the corresponding mock theta functions may be verified by 
hypergeometric transformations: 

𝑓0,𝑐5
(𝑞) = 𝑓0,5(𝑞) − 2𝑞4Ψ0,5(𝑞)                                              (3.1) 

  

Ψ0,𝑐5
(𝑞) = Ψ0,5(𝑞) −

1

2𝑞4
𝑓0,5(𝑞)                                              (3.2) 

 

Φ0,𝑐5
(𝑞2) = Φ0,5(𝑞2) + 𝑞4Φ1,5(𝑞2) ∑(1 + 𝑞2𝑛+1)           (3.3)

∞

0

 

Here 𝑓0,5(𝑞), Ψ0,5(𝑞), Φ0,5(𝑞), Φ1,5(𝑞) are the corresponding mock theta functions. 
 
The bilateral mock theta functions defined in Section 1 can be expressed in terms of the 
Lerch transcendant by means of the following lemma. 
 
Lemma 3.1𝐹𝑜𝑟 𝜖 =  ± 1, 

∑ (−1)𝑛
𝑞𝛼𝑛2

𝑞𝛽𝑛

(𝜖 𝑞𝛾; 𝑞𝛿)𝑛

=  𝑓 (𝑖(−𝜖)−
1

2𝑞
2𝛾−2𝛽−𝛿

4 ,    (−𝜖)
1
2 𝑞

𝛿−2𝛾
4 ;   𝑞

2𝛼−𝛿
2 ,   𝑞

𝛿
2) .

∞

𝑛=−∞

 

𝑎𝑛𝑑 

∑ (−1)𝑛(−𝑞; 𝑞𝛾)𝑛𝑞𝛼𝑛2
𝑞𝛽𝑛 =  𝑓 ( 𝑖𝑞

𝛽

2 ,   𝑞
2−𝛾

4 ;  𝑞𝛼,   𝑞
𝛾
2) .

∞

𝑛=−∞

 

𝑃𝑟𝑜𝑜𝑓.   The proof follows from direct substitution and use of basic hypergeometric 
transformations. 

                    As an example we note that   𝑓0,𝑐5
(𝑞) =   ∑ (−1)𝑛 𝑞

(
5𝑛2

2
  −  

3𝑛
2

)

(−q;q)𝑛
,∞

−∞  =

𝑓 (𝑖𝑞, 𝑞−
1

4; 𝑞2, 𝑞
1

2)by taking 𝛼 =
5

2
, 𝛽 =

−3

2
, 𝜖 = −1, 𝛾 = 𝛿 = 1 𝑎𝑛𝑑  Ψ0,𝑐5

(𝑞) =

  ∑ (−1)𝑛𝑞(2𝑛2+6𝑛)(−q; q)𝑛 =∞
−∞ 𝑓 (𝑖𝑞3, 𝑞

1

4; 𝑞2, 𝑞
1

2)    by taking 𝛼 = 2, 𝛽 = 6, 𝛾 = 1  in the 

above lemma. In this way all other bilateral mock theta functions defined by Equations 
1.1  𝑡𝑜   1.8   can be expressed in terms of the Lerch Transcendant. 
 

4. Generalisationof  Bilateral Mock  Theta Functions: 

We generalize the functions given by Equations  1.1 𝑡𝑜 1.8 by introducing two parameters 
𝛼 , 𝑧.  For   𝛼 = 1, 𝑧 = 0 these are reduced to the original functions. 

𝑓0,𝑐5
(𝑧, 𝛼; 𝑞) =

1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞
5𝑛2

2
+𝑛𝛼−

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

                                       (4.1) 
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𝑓1,𝑐5
(𝑧, 𝛼; 𝑞) =

1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞
5𝑛2

2
+𝑛𝛼−

3𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

                                       (4.2) 

 

𝐹0,𝑐5
(𝑧, 𝛼; 𝑞2) =

1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞5𝑛2+𝑛𝛼−4𝑛

(𝑞; 𝑞2)𝑛

∞

−∞

                                       (4.3) 

 

𝐹1,𝑐5
(𝑧, 𝛼; 𝑞4) =

1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞10𝑛2+𝑛𝛼−3𝑛

(𝑞6; 𝑞4)𝑛

∞

−∞

                                       (4.4) 

 

Ψ0,𝑐5
(𝑧, 𝛼; 𝑞) =

1

(𝑧)∞
∑(𝑧)𝑛(−1)𝑛𝑞2𝑛2 + 𝑛𝛼 + 5𝑛

∞

−∞

(−𝑞; 𝑞)𝑛                   (4.5) 

 

Φ1,𝑐5
(𝑧, 𝛼; 𝑞2) =

1

(𝑧)∞
∑(𝑧)𝑛(−1)𝑛𝑞4𝑛2 + 𝑛𝛼 + 7𝑛

∞

−∞

(−𝑞; 𝑞2)𝑛                  (4.6) 

Φ0,𝑐5
(𝑧, 𝛼; 𝑞2) =

1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞5𝑛2 + 𝑛𝛼 − 𝑛

(−𝑞; 𝑞2)𝑛

∞

−∞

                               (4.7) 

 

Ψ1,𝑐5
(𝑧, 𝛼; 𝑞) =      ∑(−1)𝑛+1

(𝑧)𝑛𝑞
5𝑛2

2
+𝑛𝛼+

3𝑛

2

2(−𝑞; 𝑞)𝑛

∞

−∞

                                                (4.8) 

We now show that these generalized functions are 𝐹𝑞 functions. 

Theorem4.1: 
𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑏𝑦  𝑡ℎ𝑒  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  4.1 − 4.8  𝑎𝑟𝑒  𝐹𝑞 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠. 

 
𝑃𝑟𝑜𝑜𝑓.   We give the proof only for 𝑓0,𝑐5

(𝑧, 𝛼; 𝑞). The remaining cases are similar. For 

𝑓0,𝑐5
(𝑧, 𝛼; 𝑞)  note that 

𝑧𝐷𝑞,𝑧𝑓0,𝑐5
(𝑧, 𝛼; 𝑞) = 𝑓0,𝑐5

(𝑧, 𝛼; 𝑞) − 𝑓0,𝑐5
(𝑧𝑞, 𝛼; 𝑞) 

                            =
1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞
5𝑛2

2
+𝑛𝛼−

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

 

                               −
1

(𝑧𝑞)∞
∑(−1)𝑛

(𝑧𝑞)𝑛𝑞
5𝑛2

2
+𝑛𝛼−

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

 

 

                                                             =
1

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞
5𝑛2

2
+𝑛𝛼−

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

  (1 − (1 − 𝑧𝑞𝑛)) 

                                  =
𝑧

(𝑧)∞
∑(−1)𝑛

(𝑧)𝑛𝑞
5𝑛2

2
+(𝑛+1)𝛼−

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

 

            = 𝑓0,𝑐5
(𝑧, 𝛼 + 1; 𝑞) 

and hence 𝑓0,𝑐4
(𝑧, 𝛼; 𝑞) is a 𝐹𝑞 function. 
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     We now give integral representations of these generalized functions. Jackson (on Page 
23 of [17]) defined the 𝑞 - integral on (0, ∞) by 
 

∫ 𝑓(𝑡)𝑑𝑞𝑡

∞

0

 = (1 − 𝑞) ∑ 𝑓(𝑞𝑛)𝑞𝑛

∞

𝑛=−∞

. 

Now let 𝑓(𝑡) = 𝑡𝑥−1(𝑡𝑞; 𝑞)∞ for some fixed  𝑥.  We have 

∫ 𝑡𝑥−1(𝑡𝑞; 𝑞)∞𝑑𝑞𝑡

∞

0

 = (1 − 𝑞) ∑ (𝑞𝑛+1; 𝑞)∞𝑞𝑛𝑥

∞

𝑛=−∞

 

                 = (1 − 𝑞)
(𝑞; 𝑞)∞

(𝑞𝑥; 𝑞)∞
 

and so 

1

(𝑞𝑥; 𝑞)∞
=

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑥−1(𝑡𝑞; 𝑞)∞𝑑𝑞𝑡

∞

0

 .                                 (4.9) 

 
We now use Equation  4.9 to give integral representations of the 𝐹𝑞  functions  4.1  to 4.8. 

We let 𝑎 = 𝑞𝛼 for convenience. 
 

𝑓0,𝑐5
(𝑞𝑧, 𝛼; 𝑞) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞𝑓0,𝑐5

(0, 𝑎𝑡; 𝑞)𝑑𝑞𝑡

∞

0

           (4.10)  

𝑓1,𝑐5
(𝑞𝑧, 𝛼; 𝑞) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞𝑓1,𝑐5

(0, 𝑎𝑡; 𝑞)𝑑𝑞𝑡

∞

0

           (4.11)  

𝐹0,𝑐5
(𝑞𝑧, 𝛼; 𝑞2) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞𝐹0,𝑐5

(0, 𝑎𝑡; 𝑞2)𝑑𝑞𝑡

∞

0

           (4.12)  

𝐹1,𝑐5
(𝑞𝑧, 𝛼; 𝑞4) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞𝐹1,𝑐5

(0, 𝑎𝑡; 𝑞4)𝑑𝑞𝑡

∞

0

           (4.13)  

Ψ0,𝑐5
(𝑞𝑧, 𝛼; 𝑞) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞Ψ0,𝑐5

(0, 𝑎𝑡; 𝑞)𝑑𝑞𝑡

∞

0

           (4.14)  

Φ1,𝑐5
(𝑞𝑧, 𝛼; 𝑞2) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞Φ1,𝑐5

(0, 𝑎𝑡; 𝑞2)𝑑𝑞𝑡

∞

0

           (4.15)  

Φ0,𝑐5
(𝑞𝑧, 𝛼; 𝑞2) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞Φ0,𝑐5

(0, 𝑎𝑡; 𝑞2)𝑑𝑞𝑡

∞

0

           (4.16)  

Ψ1,𝑐5
(𝑞𝑧, 𝛼; 𝑞) =

(1 − 𝑞)−1

(𝑞; 𝑞)∞
∫ 𝑡𝑧−1(𝑡𝑞; 𝑞)∞Ψ1,𝑐5

(0, 𝑎𝑡; 𝑞)𝑑𝑞𝑡

∞

0

                (4.17)  

Theorem 4.2:𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 4.10 𝑡𝑜 4.17  ℎ𝑜𝑙𝑑. 
𝑃𝑟𝑜𝑜𝑓.  We prove only 4.10. The remaining cases are similar. Writing 𝑞𝑧  for 𝑧 and a for 𝑞𝛼 
in 4.1 we have, 
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𝑓0,𝑐5
(𝑞𝑧, 𝛼; 𝑞) =

1

(𝑞𝑧; 𝑞)
∞ 

∑(−1)𝑛
𝑎𝑛(𝑞𝑧; 𝑞)𝑛 𝑞

5𝑛2

2
 − 

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

 

 

= ∑(−1)𝑛
𝑎𝑛𝑞

5𝑛2

2
 − 

5𝑛

2

(−𝑞; 𝑞)𝑛(𝑞𝑛+𝑧; 𝑞)∞

∞

−∞

 

                                        =  
(1 − 𝑞)−1

(𝑞; 𝑞)∞ 
∑(−1)𝑛

𝑎𝑛𝑞
5𝑛2

2
 − 

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

∫ 𝑡𝑛+𝑧−1

∞

0

(𝑡𝑞; 𝑞)∞𝑑𝑞𝑡 

                                                 =  
(1 − 𝑞)−1

(𝑞; 𝑞)∞ 
∫ 𝑡𝑧−1

∞

0

(𝑡𝑞; 𝑞)∞ ∑(−1)𝑛
(𝑎𝑡)𝑛𝑞

5𝑛2

2
 − 

5𝑛

2

(−𝑞; 𝑞)𝑛

∞

−∞

  𝑑𝑞𝑡 

                                  =  
(1 − 𝑞)−1

(𝑞; 𝑞)∞ 
∫ 𝑡𝑧−1

∞

0

(𝑡𝑞; 𝑞)∞𝑓0,𝑐5
(0, 𝑎𝑡; 𝑞)𝑑𝑞𝑡  

which completes the proof. 
 
We remark that for 𝑎𝑡 = 𝑞 the function 𝑓0,𝑐5

(0, 𝑎𝑡; 𝑞) reduces to the bilateral mock theta 

function 𝑓0,𝑐5
(𝑞)defined previously. 
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